

Search for MSSM Higgs Decaying to Taus

Dongwook Jang

Rutgers University

- I. Motivation
- II. Data and MC Description
- **III. Particle Identification**
- IV. Background
- V. τ Signature
- VI. Summary and Plan

Minimal Supersymmetric extension of Standard Model(MSSM) predicts five Higgs bosons

- MSSM parameters related with higgs: tanβ = 30, $m_A = 120$, 140, 160 GeV
- **→** Higgs production at the Tevatron $\overline{bb} \rightarrow \phi \ (= h/H/A), \quad gg \rightarrow \phi, \quad q\overline{q} \rightarrow \phi, \text{ etc.}$
- **→** Higgs decay modes :

$$\phi \rightarrow \overline{bb}$$
, $\phi \rightarrow \tau \tau$, etc.

Motivation cont'd

\rightarrow Why is τ channel interesting?

- Second largest branching fraction after $\phi \rightarrow b\overline{b}$
- $\phi \rightarrow b\overline{b}$ dominated by fakes.
- Much cleaner than $\phi \to b\overline{b}$ although $\phi \to \tau\tau$ branching fraction is ~10 times smaller.

$\rightarrow \tau$ decay properties

- Rich decay spectrum.
- $\tau \rightarrow ev_e v_\tau$, $\tau \rightarrow \mu v_\mu v_\tau$: leptonic decays (~ 36%).
- $\tau \to \pi v_{\tau}$, $\tau \to \pi \pi^0 v_{\tau}$, $\tau \to \pi \pi \pi v_{\tau}$: hadronic decays (~ 64%).
- Always accompanied by missing energy due to neutrinos in final state.

Data and MC Description

→ Data

- $e + \tau$ trigger : ~ 72 pb⁻¹
- Jet trigger (for fake rate studies) : ~ 72 pb⁻¹

→ Signal MC

- Generated by Pythia with $tan\beta = 30$, $M_A = 120$, 140, 160 (GeV).
- Used (τ_e, τ_h) final states, where τ_e denotes $\tau \to ev_e v_\tau$ and τ_h denotes hadronically decaying τ

→ Backgrounds

- $Z/\gamma^* \rightarrow \tau$ (irreducible background) generated by Pythia.
- $\mathbb{Z}/\gamma^* \to e \ e$ generated by Pythia.
- W \rightarrow e v_e + jets generated by Alpgen+Herwig.

Electron Identification

Hadronic Calorimeter

- **→** Isolated track.
- **→** Deposits most of its energy in EM calorimeter.
- **→** Signature in ShowerMax detector consistent with that expected for an electron.

Identification of hadronically decaying τ

Expected signature:

- Narrow, isolated jet.
- Low track multiplicity (1 or 3).
- Low π^0 multiplicity (0-3).

Reconstruction framework:

- Define signal and isolation cones.
- Require number of tracks and π⁰s in signal cone to be consistent with expected signature; M < 1.8 GeV.
- No tracks and π^0 s between signal and isolation cone.

Identification of hadronically decaying τ cont'd

- Studied using unbiased jet sample from the data.
- Fake rate < 0.4%, about a factor of 3 improvement over CDF Run 1!!!
- ◆ Create <u>templates</u> for use in analysis.

- ightharpoonup Dijet: mostly suppressed by e, τ identification
- ightharpoonup Z ightharpoonup e e : Remove events with M_{ee} near M_Z
- \rightarrow W \rightarrow e v + jets
 - lacktriangle One jet misidentified as τ
 - Cut on e, E_T transverse mass effectively eliminates this background.

Irreducible background: $Z \rightarrow \tau \tau$

- ♦ Same final state as φ → ττ
- ightharpoonup Can be discriminated by invariant mass, $M_{\tau\tau}$
- Form \mathbf{E}_T four vector ignoring z component and take invariant mass of τ_e , τ_h , \mathbf{E}_T
- **▶** Before performing $\phi \rightarrow \tau \tau$ search, we must see **Z** → $\tau \tau$ signature first (not previously observed by CDF)

- Fit with templates from jet $\rightarrow \tau$ fakes, $Z \rightarrow \tau\tau$, $Z \rightarrow ee$ (fixed)
- Fit results
 - $N_{Z \to \tau\tau} = 46 \pm 15 \text{ (fit result)}$
 - $N_{Z \to \tau\tau} = 43 \text{ (theory)}$

Mass distribution of opposite sign (τ_e, τ_h)

- **→** Analysis tools are ready!
- Observed $Z \rightarrow \tau\tau$ final state, with (τ_e, τ_h) .
- **Work on** $(\tau_{\mu}, \tau_{h}), (\tau_{h}, \tau_{h})$ final states in progress.
- **→** Better mass reconstruction Techniques being developed.